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ABSTRACT 

Using  configural   polysampling**  to   identify 

high-performance  estimates  proceeds   in   two   phases: 

* estimating   the  best  compromise   to  make 

at  each configuration  polysampled, 

* choosing   a generally-defined   estimate 

whose   performance  comes close   to   that  of 

this  estimated   optimum. 

In   the   first  step,   shadow pricing   of  the  criteria 

for   the different  situations  involved   is  helpful. 

If  the criteria are the  relative excess vari- 

ances  for  the  situations  in  question,  minimizing 

their maximum  corresponds  to maximizing   polyeffi- 

ciency.     In  this case,   as   in most others,   finding 

the  shadow prices  is  likely to  require   iteration. 

In the second step, whether we use a regres- 

sion or selection-by-sectors approach, or combine 

both,   the  same shadow prices are  useful. 

This report  sketches some of the  approaches 

to  the  two  steps  that  seem  natural. 

**See Technical   Report No.   185   by Pregibon and 

Tukey for  the   ideas of configural   polysampling. 

See Technical   Report No.   191   by Bell   and   Pregibon 

for  an   implementation. 
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1.  Introduction to A and B 

One of the purposes of configural polysampling is to 

identify — on the configurations sampled, at least -- esti- 

mates of high polyperformance, and, as well, to assess the 

extreme possibilities of specific kinds of polyperformance. 

Often these polyperformances are functions of the various 

sanpling variances, functions of such a character that the 

family of Sayeb estimates -- of estimates minimizing 

I   [(shadow price for (Q) ' (variance at Q) - (constant)! 
L (constant*)        J 

for some set of shadow prices -- includes, by necessity, the 

estimrte with highest polyperformance. 

Below, we first discuss, in some generality, the 

evaluation of Sayeb estimates in termsof shadow prices and 

then, second, a plausible approach to iterative selection of 

the shadow prices in the special case where polyefficiency 

is the polyperformance to be maximized.  In this case, of 

course, we can equally well treat the largest relative 

excess variance 

(variance at Q) - (minimum variance at Q) 
minimum variance at Q 

as a polyperformance to be minimized. 

We shall work with configurations specified as 

Prepared in part in connection with research at Princeöist 
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C, ,c0,...,c , where c =0, c.=l and 

y. = r + c.s 

where y. < y_ < ...< y are the order statistics of a sam- I —  2 —   — n 

pie, and a and b are likely to be chosen close to n/4 and 

3n/4.  (Note that r and s are coordinates locating a partic- 

ular sample in the configuration; they do not have their 

most customary statistical meanings.) 

A 

The Sayeb ninimizers 

2.     The case of two situations. 

We start with only two situations, A and Z, and any one 

configuration.  If t locates the estimate relative to the 

configuration, as when T=r+ts, the conditional mean square error 
of the estimate, for 

/this configuration, is a quadratic function of t.  We lose 

nothing if we modify the scale of t so that t = 0 is the 

optimum value of t in situation A and t = 1 is optimum for 

situation Z. 

If T-  and T,_ were the original optimum values, any 

value of t would correspond (where r and s locate a sample 

in the configuration f) to 

March 16, 1981 
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Var(r+(TfA 4  t(TfZ-TfA) )s) 
r ,s 

... 2 22 
= (minimized A-variance) , + t (T,„-T,,) s,„ f       r Z  i A   i A 

and thus to a contribution to the weighted sum of excess 

variances at situation A equal to 

t2<UAfSfA(TfZ-TfA)2) 

where l\, is the weight on configuration £ appropriate 

for situation A.  (In dealing with operators like "var" 

which may involve a restricted range, we specify the range 

above the operator, reserving the space below the operator 

for binary variables.  Thus the "f" above the "var" above 

indicates a conditional variance over the configuration f.) 
(The "weights" used are discussed in Technical Report #185.) 

If we are concerned with polyefficiency, we are con- 

cerned with the excess-variance as a fraction of the minimum 

variance (minimum when A alone is considered) which we call 

the "minimum A-variance".  Thus our concern, at f under A, 

about t differing from zero is the shadow price times 

|,Af«fA(TfZ-TfA) 

minimum A-veriance = aAffc 

while that at f under Z is 

March 16, 1981 
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WZfSfZ(TfZ~TfA> 

minimum Z-variance azfd-t) 

If the shadow prices are c( and f;, we then wish to 

minimize 

*  5 « ftJ + § 5 azf(l-tf)
2 

Differentiation w.r.t. t, leads to 

«»Af'f * ^Zf^'V " ° 

and thence to 

t^ = 
i* Zf 

f " «SAf + *5Zf 

and hence to a total price that is the sum over f of 

«v > «Kf> 
«5Af + **Zf  * 

More interesting, usually, will be the individual 

excess variances 

March   16,   1981 
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2   «Aptf SaAf- 

•2a2 

' azf 

(<*fiAf   +   ^Zf5 

*25a 
3AfaZf 

Zf    <«aAf   +   ^a7f)2 

and 

S a2f(l-tf)2 -5 azf 

*2*2 

?   aAf 
(<*aAf   +   **Zt)2 

-<25 • • aAfa2f 

(<iaAf   *   *aZf> 

If we   introduce 

c(a 

"f 'SI 
Af 
Zf 

and 

*(r) ' r + SUTfl * sech2(ln r) 

which • 1 if r • 1, about 1/3 for r • 0.1, or 10, and about 

1/25 for r • .01 or 100, these the excess variances become 

March 16, 1981 
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.2   . 5  aftft~  =   (1/4)($/«)   2  a2frf(rf) 

S  azc(l-tf)2   =   (1/4)(«/$)   S  aAfrf(rf) 

which  will   be  less  than,  but  perhaps of  the  order   of 

-k S azf 
and 

4$ l  aAf 

What if there are more than two situations? 

2«  Three situations. 

Suppose now that we consider an additional situation, 

B, one where the relative excess variance is estimated by 

I  aBf(t-b) 

where t a b (not necessarily between 0 and 1) is the optim- 

izing value of t for situation B alone. With shadow prices 

c(,B and § we are to minimize 

S Wa ft
2 + Ba f(t-b)

2 + $a fft-l)
2) 

We can simplify this by using 

March 16, 1981 
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(l-c)t2 + c(l-t)2 - c(l-c) = (t-c)2 

i 
I 

an  identity easily checked.  Changing notation, we have 

paBf(t-b)
2 » paBf(l-b)t

2 + paßfb(t-l)
2 - paßfb(l-b) 

and what we are to minimize becomes 

2 |(c<aAf-paBf(l-b))t
2 + ($azf+paßfb)(t-1)

2 - 5 paBfb(l-b) 

where  the   final   term   is   independent of  t. 

By analogy with  the  last  section,  we   see   that 

t jfAf  * PbaBf 
f  " da,.  + paBf  +  ^a Zf 

and we may as well calculate the three excess variances as 

EA " 5 «Aft? 

EB = 5 aBf(tf-b) 

E2 = 5 azf(tf-l) 

respectively. 

4.     Four or more  situations. 

The   formulas  for   four   situations  follow in an  entirely 

similar  way.     From  them  the  general   relations  lead   to   the 

Sayeb minimizations   (E.,EB,E_,...,E_)   given  by 

,.-• .WH-«.III —• i 
•• •        - HI 
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E. = 5 aAffcf 

5 aBf(tf-b) 

E„ - 5 acf(tf-c) 

where 

Ez = 5 azf(tf-l) 

t*  = 
pbaBf + ycacf + + ^ Zf 

<*aAf + Pa Bf + ^aCf + " 1* Zf 

B 

A sugqeste1 i teration 

5.  Worst-case minimization. 

We now suppose that our desire is to minimize 

max{EA,EB,Ec,...,EZ) 

f t 

and that we have tried 4, (0 ) ,£ (0) ,... ,$ (0 ) with results 

En(0), E_(0) ,..., E_(0), whose maximum is Em  fO). Ö D L III cX 

If E.(0) is less than E .„(0), we are doing wastefully 
A in 3X 

well   at A,   so  that we  want  to   reduce  the  corresponding 

March  16,   1981 
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relative shadow price, c(, and let E  increase in the hope 

that B_-„ decreases.  Similarly if ED(0) is less than 
Hi a X D 

E   ,~(°)»   we  would   like  B   to  sink  relatively.     And   so  on. max r 

Let  us  propose  one  algorithm   that moves  things   in   the   right 

d irection. 

For   some exponent  p -- we  try p =   1   (or,   perhaps, 

p  •  0)   for  awhile,   and   then  learn  to  choose   p more   reason- 

ably  —   and   some  convenient   k,  we   can  take 

I   E,(0)    |H 

411)   =  k|     A |  «(0) 
|Emaxm | 

I   ER(0)    |p 

B(1' s k|E      M\ P(0) 
I   max     ' | 

I   E_(0)    lP 

$ll)   *   k|E (0)1   $(0) 

rmaxluJ I 

N 

(It might be nice  to  choose   k so  that 

c((l)+B (1) + .. .+^(1)*1000  —  or  some other  handy number.) 

Looking  at  a   few successive values of 

{ (c((i) ,B (i) ,.. ,$( i) ) }  might now suggest,   for   instance,   try- 

ing   certain of  these   shadow prices as   zero.     If,  while  using 

them  as   zero,   the  corresponding   E ever  becomes     E       ,   we 
TTl oX 
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should make them finite (>0) again. 

This may not be the most rapidly convergent algorithm, 

but we can hope for relatively good performance, once we 

tune p. 

C 

External description of estimates 

£.  Introduction to C. 

We have discussed how, in simple instances we can esti- 

mate internal descriptions of "best" estimates, finding out 

— for a sample of configurations — good estimates of what 

the value of the "best" estimate is for that configuration. 

(The failure of our "estimates" to be perfect comes from our 

slight imprecision in finding the right shadow prices.) 

We now want to estimate an external description of the 

"best" estimate.  This means that we need to find a func- 

tion, defined for all configurations that comes close to our 

estimate values for each of our sample configurations. 

Several approaches are possible including: 

1)  Selecting a set of explicit estimates, evaluating 

each at each selected configuration, and doing a 

linear regression of our "best" values on the 

estimate values — the only question is what 

weights to use in the regression, 

March 16, 1981 
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2) dividing the space of configurations up into 

parts, which we will call sectors, evaluating the 

performance of each of the explicit estimates for 

each sector (using excess variances and the optim- 

izing shadow prices), and selecting the explicit 

estimate that performs best in each sector, 

3) continuing (2) by trying to interpolate sensibly 

between the several explicit estimates thus 

selected, one for each sector, 

4) combining (1) and (2), which leads, after help 

from experts, to a solvable linear programming 

problem, and to different lincoms in different sectors 

5)   taking a relatively good explicit estimate, iden- 

tifying (in terms of excess variance at optimizing 

shadow prices) its unnecessary loss at each confi- 

guration, isolating the large-loss configurations, 

and studying the change in estimate Required at 

each of them as a basis for inventing possibly 

improved estimates. 

We will have to learn by experience which of these seem 

most effective.  A little consideration will clear up cer- 

tain aspects of what we might do. 

2«  The regression approach. 

Suppose, then, that we have, for s  sample of configura- 

March 16, 1981 
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tions   f,   and   two   situations,   A and   Z: 

* The  overall   shadow prices c(  and  ^   that minimize 

the maximum   relative excess  variance. 

for   each   f,   the  constants  a.f,   a?f   and   t,   (the 

latter  on  the modified   f-scale  where   t=0   and   t=l 

are  the   separate  optima  and   do  not  correspond   to 

ya   and   yb) 

« for  each of m  explicit  estimates  the  values  t 

for   the   i-th  estimate  of  t. 

Take   first m =   2.     We  want   to  consider 

9(estimate   1)   +   (1-9)    (estimate   2) 

whose   t-value   at   f   is 

fi 

etfl + (l-0)tf2 

The shadow-priced cost of this estimate is 

c( S 8
Äf<

ötfl+*l-*>tf2>  
+ 5 5 ezf (l-etfl-(l-9)tf2) 

which equals 

c(92 5 aAftjj + 2cJ9(l-9) S aAftfl + «(1-9)
2 5 aAftf2 

+ $92 5 azfd-tf2)
2 + 2$9{l-9) Szzf (l-tfl) (l-tf2) 

March 16, 1981 
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+  $(l-9)2  5  a_f(l-tf,)
2 

Zf      uf2' 

c{92[All]   +   2c(9(l-9) [A12]   +  d.(l-9)2[A22] 

+   $92[Z11]   +   2$9(l-9) [Z12]   +   $(1-9)2[Z22] 

where  the  six[   ]'s designate  the   six   sums written down 

above.     If we  write 

! 

* 

[11]   = «[All]   +   |[Z1I] 

[12]   -  <*[A12]   +   $[Z12] 

[22]   * <<[A22]   +  $[Z22] 

where the   first and   last are  the  prices of the   indivi- 

dual  estimates,   the  price of  the  linear  combination   is 

G2[ll]   +   29(1-9)[12]   +    (l-9)2[22] 

whose  8 derivative  is 

29[11]   +   2(1-29) [12]-2(l-9) [22] 

which vanishes when 

March 16, 1981 
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m     « [22]   -   [12] 
90        [11]   -   2(12]   +   f22] 

so  that 

13   -   [12] 
1  " 90   "   [11]   -  2[12]   +" [22] 

and   the   price  of  the  optimum   linear  combination  reduces 

to 

([ll][22])-[12])2([ll] + [22])   -   2[12][11][22]   +   2[12]3 

divided  by the  square of 

[11]   -  2[12]   +   [22] 

Extending this numerically to larger m offers little 

difficulty, since what we are doing is equivalent to 

seeking  a minimum  "variance"  when 

[Zii]   - 5  azfU-tfi) 2 

[Zij]   - I azfd-tfi) d-tfl) 

The extension to two estimates and more than two situa- 

tions proceeds in a similar way. There will be more shadow 

prices and more sums, but, after pricing out, the same 

number of "variances" and "covariances". 

March 16, 1981 
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8_.     Sector   techniques. 

If we  were working  with  situations 

A  * Gaussian 

Z   - Slash 

we  would   probably want  to define  sectors   in     terms    of     some 

measures of apparent Gaussiantity-vs.-stretchedness,   such  as 

2 
Kj   •  javaj   In  s 

K,  «  In  s2    -  In s2 
2 Dl 

cn -  cl 

K4   *  Cn-1   "  c2 

where   "javaj"   stands  for  "jackknife-estimate of variance    of 
2 

the  jackknifed  values of",  s.. is the robust estimate of 

variability described, inter alia, in Chapter 11 of Mostell- 

er and Tukey, and {c,,c-,...,c }, are order statistics of 

the configuration in question. 

We might want to use such measures either alone or  in 

combination with some measures of skewness, such as 

L. • (abmean of c,'s) - (mean of c.'s) 

L- • (abmean of c.'s) - (median of c,*s) 

L3 " cn + cl 

March 15, 1981 
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L4 " cn-l + c2 

where the abmean is  the  mean  of  the     central  order 

statistics (out of n). 

Having chosen sectors, we now need to estimate the per- 

formance of each external estimate at the configurations in 

our polysample that fall in each sector. When we need to 

look, for each estimate and sector: 

*   for each configuration, at  the contributions to 

.2 relative  excess  variance, say, aAffcfi     and 

'Zf (1-t,.)   )    (recall   that   the  a's   incorporate     tht 

relevant weights), 

*   for each sector, at the priced-out contributions 

« 5 a..t*f • g 2 a_f(l-t*) JAffi ZfVi ufi 

where the sums are over all configurations in  the 

sector from our polysample« 

If we are selecting estimates, we need now only select 

for each sector the estimate whose sector price is least. 

(We may be able to make good use of a listing of excesses of 

these estimated sector prices over the similar estimate for 

our optimum as defined by the t,..) 

To go a useful step further, we might list the esti- 

mates in order of increasing sector prices for that sector, 

and then try, in each sector, all 50-50 combinations of the 

March 16, 1981 
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best 10 (or^best 6) estimates so far tried for that sector. 

Sufficient iteration here should lead to close to the op- 

timum linear combination for each sector. 

A regression calculation in each sector would also be 

feasible. 

Everything is easy, so long as we are prepared to stick 

to the previously found shadow prices. We will only get 

into linear programming situations etc. if we insist on us- 

ing more correct shadow prices — more correct because we 

are no longer accommodating as wide a variety of possible 

choices, thus shrinking the attainable choice set and tilt- 

ing the tangent hyperplane at the new optimum This 

corresponds to insisting on controlling, for our external 

estimates, the actual 

maximum relative excess variances 

for the more restricted situation, instead of controlling 

that particular 

lincom relative excess variances 

whose unrestricted optimum over our sampled configurations 

enforces an optimum for the maximum. Those who wish to 

modify may do so. 

2«  Use of judgment, intuition, insight and inventiveness 

Approaches (3) and (5) above call for human input.  We 

will have to learn how to do this by trying. 

March 16, 1981 
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